

Epistemic Uncertainty in Conformal Scores: A Unified Approach

Luben M. C. Cabezas, Vagner S. Santos, Thiago R. Ramos, Rafael Izbicki

Federal University of São Carlos and University of São Paulo

Introduction

- Focus shift: point predictions to prediction uncertainty.
- Conformal Prediction: predictive regions with finite-sample marginal validity under mild i.i.d. assumptions (Vovk et al. 2005, Shafer & Vovk 2008).
- Main ingredient: conformal score $s(\mathbf{x}, y)$.
- Choice of conformity score is critical: influences the shape and informativeness of predictive regions (Angelopoulos & Bates 2021).
- Standard CP: mostly capture aleatoric uncertainty.
- Another source of uncertainty: **epistemic uncertainty** (Hüllermeier & Waegeman 2021).
- CP with narrow predictive intervals in regions with few training data.

Figure 1: A comparison of predictive intervals from standard split-conformal regression and our proposed EPICSCORE approach.

Existing approaches

- Few strategies focus on integrating epistemic uncertainty.
- Existing approaches (e.g., Rosselini et al. 2024, Cocheteux et al. 2025) restricted to specific conformal scores (quantilic or regression).
- Our approach:
 - Integrate epistemic uncertainty on **any** conformal score;
 - Leverage Bayesian approaches to model epistemic uncertainty of $s(\mathbf{X}, Y)$;
 - Maintains marginal coverage guarantees (achieves asymp conditional);
 - Enhance rather than replace the conformal score;

Our approach

Review of split-CP

- Partitions data into \mathcal{D}_{train} and \mathcal{D}_{calib} .
- Fit nonconformity score $s(\mathbf{X}, Y)$ on \mathcal{D}_{train} .
- Compute $t_{1-\alpha}$ using the calibration set:

$$t_{1-\alpha} = \text{Quantile}_{1-\alpha} \{ s(\mathbf{X}_i, Y_i) : (\mathbf{X}_i, Y_i) \in \mathcal{D}_{\text{calib}} \}.$$

• Prediction set for a new X_{n+1} :

$$R(\mathbf{X}_{n+1}) = \{ y : s(\mathbf{X}_{n+1}, y) \le t_{1-\alpha} \}.$$

• Marginal coverage guarantee $\mathbb{P}(Y_{n+1} \in R(\mathbf{X}_{n+1})) \ge 1 - \alpha$.

EPICSCORE

Figure 2: EPICSCORE illustration scheme

Theoretical guarantees and some details

- Marginal Coverage guarantee (**Theorem 1**).
- Asymp. conditional coverage if predictive distribution converges (**Theorem 2**).
- Practical model choices for predictive distribution:
 - BART (Chipman et al. 2012);
 - Gaussian Process (Williams & Rassmussen 2006);
 - Mixture Density Network with MC-Dropout (Bishop 1994, Gal & Gharamani 2016)

Applications

Real data comparisons

- Comparisons over 13 real datasets
- 6 different metrics, with highlight for two:
 - Average Interval Score Loss
 - \circ Outlier to inlier interval ratio
- Comparing in regression and quantile regression contexts

Dataset	EPIC-BART	EPIC-GP	EPIC-MDN	CQR	CQR-r	UACQR-P	UACQR-S
airfoil	19.361 (0.234)	19.704 (0.27)	18.799 (0.29)	20.521 (0.234)	20.535 (0.236)	23.021 (0.337)	20.188 (0.3)
bike $\times (10^1)$	44.722 (0.297)	47.818 (0.320)	43.858 (0.326)	45.628 (0.256)	45.638 (0.258)	53.413 (0.376)	43.815 (0.385)
concrete	42.765 (0.723)	45.276 (0.764)	44.442 (0.8)	46.882 (0.681)	46.896 (0.683)	52.789 (1.097)	47.324 (1.349)
cycle	34.435 (0.142)	35.054 (0.131)	34.077 (0.129)	39.218 (0.134)	39.408 (0.136)	43.775 (0.181)	35.346 (0.197)
electric	0.099 (< 0.001)	0.096 (< 0.001)	0.082 (< 0.001)	0.102 (0.001)	0.102 (0.001)	0.111 (0.001)	0.097 (< 0.001)
homes $\times (10^5)$	7.739 (0.066)	8.098 (0.072)	7.225 (0.049)	8.360 (0.075)	8.433 (0.078)	11.427 (0.131)	8.544 (0.107)
meps19	65.085 (1.469)	64.907 (1.56)	64.3 (1.528)	64.239 (1.56)	64.239 (1.56)	71.015 (1.763)	63.737 (1.461)
protein	17.687 (0.019)	18.096 (0.037)	17.417 (0.019)	17.7 (0.015)	17.7 (0.016)	18.149 (0.015)	17.691 (0.015)
star $\times (10^1)$	98.466 (0.768)	98.033 (0.750)	98.725 (0.754)	97.770 (0.725)	97.791 (0.724)	99.782 (0.647)	99.809 (0.968)
superconductivity	74.37 (0.222)	80.278 (0.266)	70.212 (0.196)	75.496 (0.219)	75.508 (0.218)	87.929 (0.513)	73.971 (0.404)
WEC $\times (10^5)$	2.925 (0.009)	2.665 (0.012)	2.374 (0.010)	3.138 (0.009)	3.142 (0.009)	3.517 (0.010)	3.046 (0.010)
winered	3.007 (0.058)	3.009 (0.059)	2.977 (0.05)	2.979 (0.069)	2.978 (0.069)	3.059 (0.069)	2.999 (0.063)
winewhite	3.334 (0.03)	3.327 (0.034)	3.219 (0.03)	3.316 (0.036)	3.315 (0.036)	3.378 (0.038)	3.2 (0.036)

Application to image data

High Epistemic Uncertainty

True label: bear

APS set: {**bear**, beaver, catterpilar, chimpanzee, crocodile, elephant, forest palm_tree, possum, rabbit, willow_tree}

t-SNE of CIFAR-100 Test Features

0

All Data Points Selected Inliers

Selected Outliers

2

EPIC set: {bear, beaver, caterpillar, chimpanzee, crocodile, elephant, flatfish, forest, lion, otter, palm_tree, porcupine, possum, rabbit,skunk, whale, willow_tree }

True label: willow_tree

APS set: { aquarium_fish, bridge, castle, house, maple_tree, pine_tree, ray, shark, streetcar, sweet_pepper, trout, turtle, whale, worm }

-2

-1

EPIC set: {aquarium_fish, boy, bridge, bus, can, castle, cloud, cockroach, crab, dolphin, elephant, flatfish, girl, house, lobster, maple_tree, mountain, oak_tree, orchid, palm_tree, pine_tree, ray, rocket, rose, shark, skyscraper, streetcar, sunflower, sweet_pepper, television, trout, turtle, whale, willow_tree, worm}

Low Epistemic Uncertainty

True label: keyboard

APS set: {clock, cup, elephant, keyboard, lamp, lawn_mower, road, shrew, skyscrapper, snail, streetcar, telephone} EPIC set: {clock, elephant, keyboard,

lamp, skyscraper, telephone}

True label: trout

APS set: {aquarium_fish, bee, caterpillar, crab, dinosaur, lizard, shark, trout, turtle} EPIC set: {aquarium_fish, crab, dinosaur, lizard, trout}

Final Remarks

Final remarks

- EPICSCORE: new conformal score incorporating epistemic uncertainty into **any** predictive region.
- Preserves marginal coverage and achieves asymptotic conditional coverage.
- Good empirical results.
- Approach flexible to different problems (classification, regression, etc.).
- Future works:
 - Extend EPICSCORE to settings with distribution shift.
 - \circ Circumvent splitting of calibration set.

Thank you!

Mail to: <u>lucruz45.cab@gmail.com</u> Poster session 1 - Today!

References

- Angelopoulos, A. N., & Bates, S. (2021). A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511.
- Cocheteux, M., Moreau, J., & Davoine, F. (2025). Uncertainty-aware online extrinsic calibration: A conformal prediction approach. arXiv preprint arXiv:2501.06878.
- Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Machine learning, 110(3), 457-506.
- Rossellini, R., Barber, R. F., & Willett, R. (2024, April). Integrating uncertainty awareness into conformalized quantile regression. In International Conference on Artificial Intelligence and Statistics (pp. 1540-1548). PMLR.
- Shafer, G., & Vovk, V. (2008). A tutorial on conformal prediction. Journal of Machine Learning Research, 9(3).

References

- Vovk, V., Gammerman, A., & Shafer, G. (2005). Algorithmic learning in a random world (Vol. 29). New York: Springer.
- Lei, J., G'Sell, M., Rinaldo, A., Tibshirani, R. J., & Wasserman, L. (2018). Distribution-free predictive inference for regression. Journal of the American Statistical Association, 113(523), 1094-1111.